1read 100read
2013年02月数学335: 代数学総合スレッド Part6 (249) TOP カテ一覧 スレ一覧 2ch元 削除依頼
東大生以外は数学語るな (807)
3項演算子を考えるスレ (316)
ガロア生誕200周年記念スレ part 3 (979)
おまえらIQいくつ? Part2 (604)
【数式処理システム】 Maxima 【Common Lisp】 (278)
多様体スッドレpart3 (375)

代数学総合スレッド Part6


1 :2011/07/15 〜 最終レス :2013/01/22
代数に関する話題全般のスレッドです。
代数学総合スレッド
http://science.2ch.net/test/read.cgi/math/1011536232/
代数学総合スレッド Part2
http://science3.2ch.net/test/read.cgi/math/1045779496/
代数学総合スレッド part3
http://science6.2ch.net/test/read.cgi/math/1116279106/
代数学総合スレッド Part4
http://science6.2ch.net/test/read.cgi/math/1188000000/
代数学総合スレッド Part5
http://kamome.2ch.net/test/read.cgi/math/1233450000/

2 :


3 :
猫が量子群について語りますだ

4 :
猫は量子群について語りませんだ。


5 :
代数学について語り増田!

6 :
マスダはマスの申し子だす

7 :
ウィキに増田の項目できてるよ

8 :
マシュダさんの濃密な人生がたった4行で

9 :
ヤって出す増田哲也(回文)

10 :
生活保護って書いてあったけど、本当なの?
Rのヒモだったら生活保護は無理でわ?

11 :
❶東大
❷R
❸BHG
❹ラミ
❺センター
❻マセマ
❼バーチャ
❽ウイイレ

12 :
❶東大
❷R
❸BHG
❹ラミ
❺センター
❻マセマ
❼バーチャ
❽ウイイレ

13 :
❶東大❷R
❸BHG❹ラミ
❺センター❻マセマ
❼バーチャ❽ウイイレ

14 :
sage

15 :
自然数全体をN
g: N→N とする。
∀n  g(g(g(g(n)))) = 2n,
を満たす g(n) を挙げよ。

16 :
環論の質問です。
整域 A、A の素イデアル P、A のイデアル I で P を
含むもの、があるとします。
A の二元 a、b に対して
ab が IP の元、a が I の元だけど IP の元でないならば、
b は P の元になりますか?

17 :
no

18 :
・初学者に対して、「剰余環とはなにか」を説明せよ。
・集合論などの基本的知識や環の定義、イデアルの定義は既知としてよいが、
 ほかの概念は出来るだけ詳しく説明せよ。
・剰余環がどのような集合にどのような演算を定めたものなのかを
 はっきりと述べよ。
・剰余環の具体例をひとつ挙げ、計算例も説明せよ。
ご享受願えませんでしょうか。。。


19 :
A=Z[X], P=(X), I=(X, 2), IP=(X^2, 2X)
a=X, b=2

20 :
>>18
教育法に関する質問はご遠慮願います。

21 :
すみませんでした。
この内容でレポートが出て、手がつけられませんで・・・。
剰余環とは何か、簡単に説明してもらえませんかm(__)m

22 :
教科書嫁

23 :
>>18
同値関係と剰余類は分かってるのか?
それが分かれば終了。

24 :
教える立場に立つ目的で
> ・初学者に対して〜説明せよ。
という課題に挑もうという人が、教え方を論じるどころか
逆に誰かに内容を教えてもらわないといけないってのは、
だめだろ、いろいろと。
玉川の通信教育学部の悪夢再来か?

25 :
>>24
> 玉川の通信教育学部の悪夢再来か?
何それ?

26 :
同値関係と剰余類は理解してます。
ヒントありがとうございました!!
では、失礼します。

27 :
整数全体をZ
g:Z→Z とする。
∀n;  g(g(g(g(n)))) = 2n,
を満たす g(n) を挙げよ。


28 :
ぶっころすぞ

29 :
>>17
>>19
反例ありがとうございます!!

30 :
>>17
>>19
考えていた問題が一箇所間違えていました。
済みません。
I と P の包含関係が逆でした。
以下の主張の反例が欲しいです。
A:可換環
I ⊂ P ⊂ A:イデアル, P は素イデアル
a,b ∈ A
「ab ∈ IP, a ∈ I」 だが 「a ∈ IP ではない」
⇒ b ∈ P

31 :
A=k[X,Y,Z]/(XY-Z^2), I=P=(X,Z)
a=X, b=Y

32 :
>>31
素晴らしいです
どうもありがとうございます

33 :
体論の質問です
標数 0 の体 K の二つの線形無関連な
有限次巡回拡大 L,M があるとします。
それぞれ定義多項式 f,g ∈ Z[X] が与えられて
いるとします。
何でも良いので合成体 LM の定義多項式を一つ
(f,g の係数を使って)一般に与えたいのですが可能
でしょうか?
deg(f)=2 のときは αβ (f,g の根)の最小多項式
を基本対称式を用いて(係数に出てくる対称式を基本
対称式で表して)出来たのですが、一般に書くのは難
しそうでした。但し、ベキの基本対称式
e_i(α_1^d,…,α_n^d)
は Newton identities があるので既知とします。
α_i は f の根たち、e_i は i 次基本対称式です。

34 :
>>27
面白そうだから考えてみたけど、それで本業のレポート間に合わなくなったw
g^0(n)=n
g(g^k(n))=g^(k+1)(n)
と書くことにする。
以下が証明出来ればいい。
gが、g^4(n)=2nを満たすためには、gが次の形に書けることが必要十分である。すなわち、
数列a_n(0≦n)を奇数のみからなり、すべての(正の)奇数が重複なく、一回ずつ現れるものとすると、
g(0)=0
(任意の0以外の自然数は自然数r,mと3以下の自然数iによって一意的にa_(4r+i)(2^m)とかけるので)
g((a_(4r+i))2^m)=a_(4r+i+1))2^m (i≠3の時)
        =a_(4r)2^(m+1) (r=3の時)
証明:
十分性:
n=0のときはg^4(n)=2nは明らか。
よってg^4(a_(4r+i)2^m)(rは自然数,iは3以下の自然数)について言えばいいが、
a_nが奇数だけからなることより、
g^4(a_(4r+i)2^m)
=g^3(a_(4r+i+1)2^m)
...
=g^(i+1)(a_(4r+3)2^m)
=g^i((a_4r)2^(m+1))
=g^(i-1)((a_(4r+1))2^(m+1))
...
=g^0((a_(4r+i))2^(m+1))
=(a_(4r+i))2^(m+1)
=2(a_(4r+i)2^m)

35 :
必要性:
gを任意の自然数nに対してg^4(n)=2nが成り立つものとする。

(i) g(n)は単射
g(n)=g(m)とすると、
g^4(n)=g^4(m)
条件より、2n=2mであるから、n=m.
(ii) g(0)=0
2g(0)=g^4(g(0))=g(g^4(0))=g(2*0)=g(0)
したがってg(0)=0
(iii) R={r;r=g(n)となるnが存在しない}とするとき、Rの元rに対して、
g^i(r)はiが3以下の自然数の時、奇数であり、iが3より大きい時は偶数。
i<4のとき、もし、g^i(r)=2nだとすると、g^4(n)=g^i(r)であり、gは単射だから、
r=g^(4-i)(n)=g(g^(3-i)(n))であるからRの定義に反する。
また、i>3のとき、g^i(n)=g^4(g^(i-4)(n))=2g^(i-4)i(n)だから後半も成り立つ。
(iv)Rは奇数からなる無限集合(したがって加算)である。
Rの元が奇数であることは(iii)でi=0とすればいい。
Rが有限とする。
Rt={g^i(r);r∈R,i∈N}とするとき、(iii)より、Rtは有限個の奇数しか含まない。
そこで、これに含まれない奇数をnとする。
R⊂Rtだから、n=g(n_0)となるn_0がある。すると、n_0はRtに含まれない。
したがってn=g(n_1)=g^2(n_2)を満たす、Rtに属さないn_1がある。
これを繰り返して、
n=g^4(m)=2mを満たすmがある。しかしこれはnが奇数である事に反する。

36 :
(v)数列a_nをa_4r∈R,a_(4r+i)=g^i(a_4r)(0≦i<4)
と定義する。ただし、{a_4r}にはRのすべての元が一回ずつ重複なく現れるように取る。
この時、a_nは奇数だけからなり、すべての奇数が重複なく一回ずつ現れる。
奇数のみからなることはa_nの定義と(iii)から明らか。
すべての奇数が現れることは、(iii)より、Rtがすべての奇数を含むことを、
重複がないことを言うにはa_(4r_1+i)=a_(4r_2+j)のとき、
r_1=r_2、i=jを言えばいい。
前者はRtに含まれない奇数をnとすると、(iv)と同じ論法で矛盾をきたす。
後者は、i≧jとしてもよい。gは単射であり、a_(4r_1+i)=a_(4r_2+j)のとき、
g^i(a_(4r_1))=g^j(a_(4r_2))
a_(4r_2)=g^(i-j)(a_(4r_1))
もし、i≠jだとa_4rとRの定義に反するのでi=j.
つまり、a_(4r_1)=a_(4r_2). a_4rの定義より、r_1=r_2。


37 :
(vi)
0以外の任意の自然数n=(a_(4r+i))2^m(0≦i<4)に対して、g(n)は上で定義したa_nによって
g((a_(4r+i))2^m)=a_(4r+i+1))2^m (i≠3の時)
        =a_(4r)2^(m+1) (i=3の時)
とかける。
g((a_(4r+i))2^m)
=g^(4m+1)(a_(4r+i))
=g^4m(g(a_(4r+i)))  --☆
ここでi≠3なら、g(a_(4r+i))=a_(4r+i+1)より、
=g^4m(a_(4r+i+1))
=a_(4r+i+1))2^m
また、i=3なら、
g(a_(4r+3))
=g(g^3(a_4r))
=g^4(a_4r)=2*(a_4r)
よって
☆=g^4m(2*(a_4r))
=a_(4r)2^(m+1)
[証明終]

38 :
具体例を作りたければ、例えばa_n = 2n+1とすればいい。
つまり以下のようになる。
0≦i<4のとき、
g(0)=0
g((8r+2i+1)2^m)=(8r+2(i+1)+1)2^m (i≠3の時)
        =(8r+1)2^(m+1) (i=3の時)
>>27
a_nを負の添え字まで拡張して負の奇偶まで考えれば上と同様。
特に最後の具体例はそのまま適応できる。
どや?
もしかしたら、群論とか半群論の言葉をつかってもっと綺麗に言い表せるのかもしれないが。
わからん。誰か頼む。いい方法ないの?

39 :
ミス。負の添字はいらない。

40 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313

41 :
[S]
東大
弁護士
Bパート

42 :
>>331
いいなぁー

43 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313

44 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313

45 :
[S]
東大
弁護士
Bパート

46 :
ノート
やさい
歯ブラシ
牛R
やよい

47 :
[S]
東大
弁護士
Bパート

48 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236

49 :
Aを有限集合とする。
Aの元がn個のとき写像g:A→Aに対して
g^n(A)=g^(n+1)(A)であることを示せ.
がわかりません。
どなたか分かる方いたら教えてください(><;
g^nはn個のgの合成写像です。

50 :
>>49
それは、互換 (12) の2乗と3乗が等しいことを主張しているね。

51 :
ノート
牛R

52 :
[S]
東大
弁護士
Bパート

53 :
>>50
どういうことですか(?。?

54 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236

55 :
>>53
>>50じゃないが、どういうこともなにもそのままの意味だろ、
n=2のときg=(1 2)だったらどうだってこと。

56 :
[B]
ノート
牛R
放送大学
水虫

57 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左

58 :
ミクロ
息抜き

59 :
流す

60 :
[S]
東大
弁護士
Bパート

61 :
口に出す

62 :
ドルとシャルケー戦

63 :
でそう出てなかったゲップが出た

64 :
さっきの地震怖かった

65 :
>>53
あら済まない.
g^n(A) を g^n(x) と読み違えていた.
g^k(A)⊇g^{k+1}(A) であることと
k で等号が成立すれば m≧k で g^m(A)=g^{m+1}(A) となることを使う.

66 :
[S]
東大
弁護士
Bパート

67 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左
掃除

68 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236

69 :
[S]
東大
弁護士
Bパート

70 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236

71 :
[S]
東大
弁護士
Bパート

72 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左
掃除

73 :

[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ

74 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左
掃除
左翼右翼

75 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左
掃除
左翼右翼

76 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ

77 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左
掃除
左翼右翼

78 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP

79 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP

80 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP

81 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP

82 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左
掃除
左翼右翼

83 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP

84 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4

85 :
[B]
ノート
牛R
放送大学
水虫
やよいのゲップ
アラ右アラ左
掃除
左翼右翼

86 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4

87 :
[S]
東大
弁護士
Bパート

88 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4

89 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4

90 :
[S]
東大
弁護士
Bパート

91 :
[S]
東大
弁護士
Bパート

92 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4
LC

93 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4
LC

94 :
デビル

95 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4
LC

96 :
[A]
TS10
SBR
VFK10
TKK
VF1
LCCR
SINX
VF1M4
VF1L2
VF1H2
EMPC
MPE
4231
4213
3331
3313
145
53A3
6236
EMPCB
EMJ
LP
CJ
F4
LC

97 :
[S]
東大
弁護士
Bパート

98 :
[S]
東大
弁護士
Bパート

99 :
[S]
東大
弁護士
Bパート

100read 1read
1read 100read
TOP カテ一覧 スレ一覧 2ch元 削除依頼
初等整数論の問題A (932)
さてテストが迫ってきたのだが (723)
素数はなぜ不規則に現れるのか (226)
数学を哲学する (361)
マルクス主義的数学 (231)
代数学総合スレッド Part6 (249)
--log9.info------------------
じゃあ長島一茂とデブ大久保はどっちがすごいのよ? (615)
野村克也監督の功績を語ろう (227)
★☆★2003年のプロ野球を語ろう★☆★ (523)
1989年パリーグペナントレース (206)
【ぴの】ファミスタの思い出【くどう】 (374)
西本聖を褒め称えるスレ (836)
二流から一流に変貌を遂げた選手 (281)
平成以降の日本球界名投手100傑を決めよう (476)
1986年のプロ野球 (421)
山下大輔氏と共に12球団の苦難を乗り越えてゆくスレ3 (322)
悲運の名将・西本幸雄 (782)
通説や俗説の類の真偽を検証するスレ (380)
パワプロ能力査定In殿堂板 第10試合 (926)
めっちゃ好きだった助っ人外国人 (424)
もし黒い霧事件が起きなければプロ野球はどうなった? (502)
2000-2004年梨田近鉄バファローズを語る 2 (522)
--log55.com------------------
【+++】RAMMSTEIN ラムシュタイン17【+++】
【驚異の】BURRN!清家【新人】
筋肉少女帯 part.149【ワッチョイ有】
THE冠/冠徹弥  その6
なんでLOUD PARKは無くなったの?
メタルを聴いてる奴の特徴
WHITESNAKE Part40
IRON MAIDEN part51